เรื่อง Tree
ทรี (Tree) เป็นโครงสร้างข้อมูลที่ความสัมพันธ์ระหว่าง โหนดจะมีความสัมพันธ์ลดหลั่นกันเป็นลำดับชั้น (Hierarchical Relationship)ได้มีการนำรูปแบบทรีไปประยุกต์ใช้ในงานต่าง ๆ อย่างแพร่หลาย ส่วนมากจะใช้สำหรับแสดงความสัมพันธ์ระหว่างข้อมูลแต่ละโหนดจะมีความสัมพันธ์กับโหนดในระดับที่ต่ำลงมา หนึ่งระดับได้หลาย ๆ โหนดเรียกโหนดดังกล่าวว่า โหนดแม่ (Parentor
Mother Node)โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหนดราก (Root Node)โหนดที่มีโหนดแม่เป็นโหนดเดียวกันเรียกว่า โหนดพี่น้อง (Siblings)โหนดที่ไม่มีโหนดลูก เรียกว่าโหนดใบ (Leave Node)เส้นเชื่อมแสดงความสัมพันธ์ระหว่างโหนดสองโหนดเรียกว่า กิ่ง (Branch)
นิยามของทรี
1. นิยามทรีด้วยนิยามของกราฟทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop) ในโครงสร้าง โหนดสองโหนดใด ๆ ในทรีต้องมีทางติดต่อกันทางเดียวเท่านั้น และทรีที่มี N โหนด ต้องมีกิ่งทั้งหมด N-1 เส้น
2. นิยามทรีด้วยรูปแบบรีเคอร์ซีฟทรีประกอบด้วยสมาชิกที่เรียกว่าโหนด โดยที่ ถ้าว่าง ไม่มีโหนดใด ๆ เรียกว่านัลทรี (Null Tree) และถ้ามีโหนดหนึ่งเป็นโหนดราก ส่วนที่เหลือจะแบ่งเป็นทรีย่อย (Sub Tree)T1, T2, T3,…,Tk โดยที่ k>=0 และทรีย่อยต้องมีคุณสมบัติเป็นทรี
นิยามที่เกี่ยวข้องกับทรี
1. ฟอร์เรสต์ (Forest)
หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือ เซตของทรีที่แยกจากกัน(Disjoint Trees)
2. ทรีที่มีแบบแผน (Ordered Tree)
หมายถึง ทรีที่โหนดต่าง ๆ ในทรีนั้นมีความสัมพันธ์ที่แน่นอน เช่น ไปทางขวาไปทางซ้าย เป็นต้น
3. ทรีคล้าย (Similar Tree)
คือทรีที่มีโครงสร้างเหมือนกัน หรือทรีที่มีรูปร่างของทรีเหมือนกัน โดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด
4. ทรีเหมือน (Equivalent Tree)
คือทรีที่เหมือนกันโดยสมบูรณ์ โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5. กำลัง (Degree)
หมายถึงจำนวนทรีย่อยของโหนด นั้น ๆ
6. ระดับของโหนด (Level of Node)
คือระยะทางในแนวดิ่งของโหนดนั้น ๆ ที่อยู่ห่างจากโหนดราก เมื่อกำหนดให้ โหนดรากของทรีนั้นอยู่ระดับ 1และกิ่งแต่ละกิ่งมีความเท่ากันหมด คือ ยาวเท่ากับ 1หน่วย ซึ่งระดับของโหนดจะเท่ากับจำนวนกิ่งที่น้อยที่สุดจากโหนดรากไปยังโหนดใด ๆ บวกด้วย 1และจำนวนเส้นทางตามแนวดิ่งของโหนดใด ๆ ซึ่งห่างจากโหนดราก เรียกว่า ความสูง (Height) หรือความลึก (Depth)
การแทนที่ทรีในหน่วยความจำหลัก
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั่นคือจำนวน ลิงค์ฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูก
1. โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูกทุกโหนด การแทนที่ทรีด้วยวิธีนี้ จะให้จำนวนฟิลด์ในแต่ละโหนดเท่ากันโดยกำหนดให้มีขนาดเท่ากับจำนวนโหนดลูกของโหนดที่มีลูกมากที่สุด โหนดใดไม่มีโหลดลูกก็ให้ค่าพอยเตอร์ในลิงค์ฟิลด์นั้นมีค่าเป็น Null29Tree (Cont.)
2. แทนทรีด้วยไบนารีทรี
เป็นวิธีแก้ปัญหาเพื่อลดการ สิ้นเปลืองเนื้อที่ในหน่วยความจำก็คือกำหนดลิงค์ฟิลด์ให้มีจำนวนน้อยที่สุดเท่าที่จำเป็นเท่านั้นโดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์
-ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต
-ลิงค์ฟิลด์ที่สองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไปโหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยน์เตอร์ในลิงค์ฟิลด์มีค่าเป็น Null
การแปลงทรีทั่วไปให้เป็นไบนารีทรี
ขั้นตอนการแปลงทรีทั่วๆ ไปให้เป็นไบนารีทรี มีลำดับขั้นตอนการแปลง ดังต่อไปนี้
1. ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ ระหว่างโหนดแม่และโหนดลูกอื่น ๆ
2. ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง
3. จับให้ทรีย่อยทางขวาเอียงลงมา 45 องศา
การท่องไปในไบนารีทรี
ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆ โหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับ
ขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็นโหนดแม่ (แทนด้วย N)ทรีย่อยทางซ้าย (แทนด้วยL)หรือทรีย่อยทางขวา (แทนด้วย R)
1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ
ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้
(1) เยือนโหนดราก
(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์
(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
2.การท่องไปแบบอินออร์เดอร์(Inorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ
ในทรีด้วยวิธี LNR
มีขั้นตอนการเดินดังต่อไปนี้
(1) ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์
(2) เยือนโหนดราก
(3) ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์
3. การท่องไปแบบโพสออร์เดอร์(Postorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ
ในทรีด้วยวิธี LRN มีขั้นตอนการเดินดังต่อไปนี้
(1) ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์
(2) ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์
(3) เยือนโหนดราก
เอ็กซ์เพรสชันทรี (Expression Tree)
เป็นการนำเอาโครงสร้างทรีไปใช้เก็บนิพจน์ทางคณิตศาสตร์โดยเป็นไบนารีทรี ซึ่งแต่ละโหนด
เก็บตัวดำเนินการ (Operator) และและตัวถูกดำเนินการ(Operand) ของนิพจน์คณิตศาสตร์นั้น ๆ ไว้ หรืออาจจะเก็บค่านิพจน์ทางตรรกะ (Logical Expression)นิพจน์เหล่านี้เมื่อแทนในทรีต้องคำนึงลำดับขั้นตอนในการคำนวณตามความสำคัญของเครื่องหมายด้วยโดยมีความสำคัญตามลำดับ
ไบนารีเซิร์ชทรี
ไบนารีเซิร์ชทรี (Binary Search Tree)เป็นไบนารีทรีที่มีคุณสมบัติที่ว่าทุก ๆ โหนดในทรี ค่าของโหนดรากมีค่ามากกว่าค่าของทุกโหนดในทรีย่อยทางซ้าย และมีค่าน้อยกว่าหรือเท่ากับค่าของทุกโหนดในทรีย่อยทางขวาและในแต่ละทรีย่อยก็มี คุณสมบัติเช่นเดียวกัน
ไม่มีความคิดเห็น:
แสดงความคิดเห็น